

How Does It Work?

- This is an investigation where you have for example 2 frogs on each side sitting on lily pads. One lily pad should be situated in the middle of the two sets of frogs.
> The aim of this investigation is to get the frogs on the left to the right, and the frogs on the right, on the left.
- To move, you have a slide and a jump. For the slide, you can only move one lily pad along. Whereas the jump is where you can jump over another colour frog to get to 2 pads along.

1 Frog on each side

3 moves
2 slides
1jump

2 Frogs on each side

8 moves

4 slides
4 jumps

3 Frogs on each side

15 moves

6 slides
9 jumps

4 Frogs on each side

24 moves

 8 slides 16 jumps
Results

No. of green frogs	No. of red frogs	Total no. of moves		No. of slides	No. of jumps
1	1	3	2	1	
2	2	8	4	4	
3	3	15	6	9	
4	4	24	8	16	
5	5	35	10	21	
10	10	120	20	100	
100	100	10200	200	10000	
n	n	$\left(n_{2}\right)+2 n$	$2 n$	n_{2}	

My prediction for 5 on each side

- My prediction is 35 moves in total, 10 slides and 25 jumps.

5 frogs on each side

35 moves
10 slides
25 jumps

Explanation

- To get the number of jumps you must square the number of frogs
- To get the number of slides you must double the number of frogs (e.g., 1 frog on each side. $1 \times 2=$ 2. 2 = no. of slides)
- To get the number of movements, add the no. of slides and jumps.

Algebraic Expression

\rightarrow No. of moves: $\left(n_{2}\right)+2 n$

- No. of slides: 2n
\rightarrow No. of jumps: n_{2}

100 frogs on each side

- Slides = 200
- Jumps 10000
- 10200
- I worked this out by doubling the number of frogs ($100 \times 2=200$). Then squaring the number of frogs $(100 \times 100=10000)$. Finally, I added 10000 to 200 so I got 10200 .

How Does It

Work?

- This is an extension of the investigation Frogs.
- In this extension, your aim is the same, but you start with for example 1 frog on one side and 2 frogs on the other.
- The rules are the same; you only have a slide and a jump to move.

1 Frog on one side and 2 on the other

5 moves

3 slides

2 jumps

1 Frog on one side and 3 on the other

7 moves
 4 slides
 3 jumps

1 Frog on one side and 4 on the other

9 moves
 5 slides
 4 jumps

1 Frog on one side and 5 on the other

11 moves
 6 slides
 5 jumps

Table of results

No. of Green Frogs	No. of Red Frogs *	Total No. of Moves	No. of Jumps	No. of Slides
1	2	5	2	3
1	3	7	3	4
1	4	9	4	5
1	5	11	5	6

* = changing number of red

Frogs

Explanation

- To find out the number of moves you must multiply the changing number of red Frogs by two and then add 1. ($2 \times 2+1$ = 5) 5 moves
- To work out the number of slides you must add the number of green to red frogs. $(1+2=3) 3$ slides
- To find out the number of jumps you must multiply the number of red and green frogs together. $(1 \times 2=2)$

Algebraic Expression

- No. of moves $=\mathrm{n} \times 2+1$
- No. of slides $=\mathrm{n}+1$
- No. of jumps $=\mathrm{n}+0$

That's All For Now Frogs!(-)

